APP Protein Family Signaling at the Synapse: Insights from Intracellular APP-Binding Proteins
نویسندگان
چکیده
Understanding the molecular mechanisms underlying amyloid precursor protein family (APP/APP-like proteins, APLP) function in the nervous system can be achieved by studying the APP/APLP interactome. In this review article, we focused on intracellular APP interacting proteins that bind the YENPTY internalization motif located in the last 15 amino acids of the C-terminal region. These proteins, which include X11/Munc-18-interacting proteins (Mints) and FE65/FE65Ls, represent APP cytosolic binding partners exhibiting different neuronal functions. A comparison of FE65 and APP family member mutant mice revealed a shared function for APP/FE65 protein family members in neurogenesis and neuronal positioning. Accumulating evidence also supports a role for membrane-associated APP/APLP proteins in synapse formation and function. Therefore, it is tempting to speculate that APP/APLP C-terminal interacting proteins transmit APP/APLP-dependent signals at the synapse. Herein, we compare our current knowledge of the synaptic phenotypes of APP/APLP mutant mice with those of mice lacking different APP/APLP interaction partners and discuss the possible downstream effects of APP-dependent FE65/FE65L or X11/Mint signaling on synaptic vesicle release, synaptic morphology and function. Given that the role of X11/Mint proteins at the synapse is well-established, we propose a model highlighting the role of FE65 protein family members for transduction of APP/APLP physiological function at the synapse.
منابع مشابه
Dexras1 interacts with FE65 to regulate FE65-amyloid precursor protein-dependent transcription.
FE65 is an adaptor protein that binds to and forms a transcriptionally active complex with the gamma-secretase-derived amyloid precursor protein (APP) intracellular domain. The regulatory mechanisms of FE65-APP-mediated transcription are still not clear. In this report, we demonstrate that Dexras1, a Ras family small G protein, binds to FE65 PTB2 domain and potently suppresses the FE65-APP-medi...
متن کاملEffects of Antiproliferative Protein (APP) on Modulation of Cytosolic Protein Phosphorylation of Prostatic Carcinoma Cell Line LNCaP
Antiproliferative protein (APP) isolated from conditioned media of two androgen-independent prostatic carcinoma cell lines, PC3 and Du-145 was shown to inhibit selectively cell proliferation of androgen-dependent prostate cancer cell line LNCaP in a dose dependent manner. This protein was further purified with HPLC using hydrophobic interaction column (phenyl 5PW) and was used to study the modu...
متن کاملThe APP Intracellular Domain Is Required for Normal Synaptic Morphology, Synaptic Plasticity, and Hippocampus-Dependent Behavior.
UNLABELLED The amyloid precursor protein family (APP/APLPs) has essential roles for neuromuscular synapse development and for the formation and plasticity of synapses within the CNS. Despite this, it has remained unclear whether APP mediates its functions primarily as a cell surface adhesion and signaling molecule or via its numerous proteolytic cleavage products. To address these questions, we...
متن کاملTurnover of Amyloid Precursor Protein Family Members Determines Their Nuclear Signaling Capability
The amyloid precursor protein (APP) as well as its homologues, APP-like protein 1 and 2 (APLP1 and APLP2), are cleaved by α-, β-, and γ-secretases, resulting in the release of their intracellular domains (ICDs). We have shown that the APP intracellular domain (AICD) is transported to the nucleus by Fe65 where they jointly bind the histone acetyltransferase Tip60 and localize to spherical nuclea...
متن کاملRoles of the amyloid precursor protein family in the peripheral nervous system
Compelling evidence from in vivo model systems within the past decade shows that the APP family of proteins is important for synaptic development and function in the central and peripheral nervous systems. The synaptic role promises to be complex and multifaceted for several reasons. The three family members have overlapping and redundant functions in mammals. They have both adhesive and signal...
متن کامل